Molecular Structure-Affinity Relationship of Flavonoids in Lotus Leaf (Nelumbo nucifera Gaertn.) on Binding to Human Serum Albumin and Bovine Serum Albumin by Spectroscopic Method.
نویسندگان
چکیده
Lotus leaf has gained growing popularity as an ingredient in herbal formulations due to its various activities. As main functional components of lotus leaf, the difference in structure of flavonoids affected their binding properties and activities. In this paper, the existence of 11 flavonoids in lotus leaf extract was confirmed by High Performance Liquid Chromatography (HPLC) analysis and 11 flavonoids showed various contents in lotus leaf. The interactions between lotus leaf extract and two kinds of serum albumins (human serum albumin (HSA) and bovine serum albumin (BSA)) were investigated by spectroscopic methods. Based on the fluorescence quenching, the interactions between these flavonoids and serum albumins were further checked in detail. The relationship between the molecular properties of flavonoids and their affinities for serum albumins were analyzed and compared. The hydroxylation on 3 and 3' position increased the affinities for serum albumins. Moreover, both of the methylation on 3' position of quercetin and the C₂=C₃ double bond of apigenin and quercetin decreased the affinities for HSA and BSA. The glycosylation lowered the affinities for HSA and BSA depending on the type of sugar moiety. It revealed that the hydrogen bond force played an important role in binding flavonoids to HSA and BSA.
منابع مشابه
Spectroscopic, Thermodynamic and Molecular Docking Studies on Interaction of Toxic Azo Dye with Bovine Serum Albumin
Investigation on interaction of azo dyes with bovine serum albumin as carrier protein will be important in the field of toxicology because of distribution and transportation of dyes in blood. In this regard, the interaction between the azo dye, trisodium (4E)-3-oxo-4-[(4- sulfonato-1- naphthyl) hydrazono] naphthalene-2,7-disulfonate (C20H11N2Na3O10S3), known as Amaranth and bovine serum albumin...
متن کاملComparative Binding Affinities of Flavonoid Phytochemicals with Bovine Serum Albumin
Dietary flavonoids show beneficial effects in the prevention of chronic diseases. However, flavonoid bioavailability is poor, probably due to their interaction with serum albumins. In the current work, the binding interactions of eight related flavonoids, sharing a similar core structure, with bovine serum albumin (BSA) were investigated by fluorescence spectroscopy. The binding affinities of t...
متن کاملComparative Binding Affinities of Flavonoid Phytochemicals with Bovine Serum Albumin
Dietary flavonoids show beneficial effects in the prevention of chronic diseases. However, flavonoid bioavailability is poor, probably due to their interaction with serum albumins. In the current work, the binding interactions of eight related flavonoids, sharing a similar core structure, with bovine serum albumin (BSA) were investigated by fluorescence spectroscopy. The binding affinities of t...
متن کاملStudy of interaction between nicotinamide and human serum albumin using spectroscopic techniques and molecular docking simulation simulation
Human serum albumin is one of the most important blood proteins that has the ability to bind a wide range of compounds and different drugs. Hence, knowing how drugs bind to albumin is crucial to understand their pharmacokinetics and pharmacodynamic properties. The binding of drugs to protein affects the drug's excretion, distribution and interaction in the target tissues. Nicotinamide (NA) is a...
متن کاملThermodynamic Analysis for Cationic Surfactants Binding to Bovine Serum Albumin
In the present study, the binding isotherms for interaction of a homologous series of n-alkyltrimethyl ammonium bromides with bovine serum albumin (BSA) have been analyzed on basis of intrinsic thermodynamic quantities. In this regards, the intrinsic Gibbs free energy of binding, AGb(i,)„ has been estimated at various surfactant concentrations and its trend of variation for both binding sets ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 22 7 شماره
صفحات -
تاریخ انتشار 2017